

2583 (170) SEPT 19/95(W) REV.0 (P867)

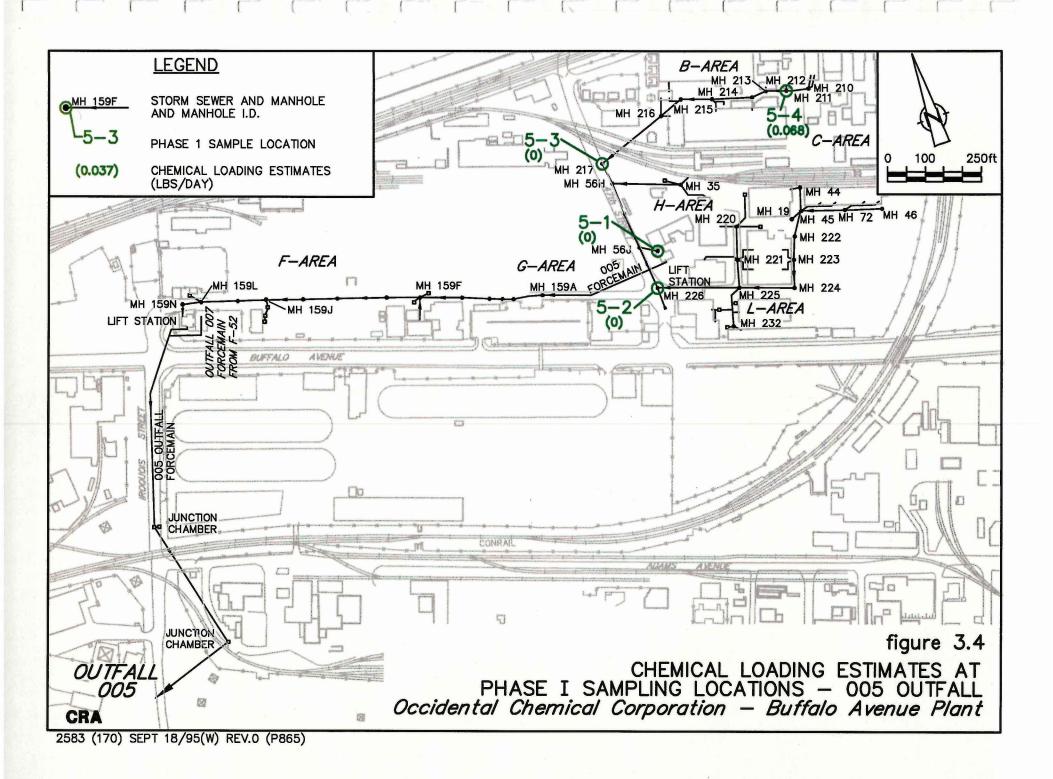


TABLE 2.1

PHASE I - OUTFALL SAMPLE LOCATION SUMMARY OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Outfall	OxyChem Manhole Designation	(1) -	Phase I Sample Designation	Sample Collection Point Description
001	MH 585		1-1	north inlet
	MH 518		1-2	center of manhole
003	MH 2		3-1	west inlet
	MH 1		3-2	west inlet
	NEW MH		3-3	east outlet
	MH 681		3-4	center of manhole
	MH 684		3-5	south outlet
	MH 433		3-6	west inlet
	MH 429		3-7	center of manhole
004	MH 93E		4-1	north outlet
222	MH 97		4-2	northeast inlet
	MH 97		4-3	south inlet
005	LIFT STATION H-20		5-1	H-20
	MH 226		5-2	north outlet
	MH 217		5-3	east inlet
	MH 211		5-4	west outlet
				Jos James

⁽¹⁾ Manholes typically listed in order from most downstream sections to upstream sections.

TABLE 3.1

OUTFALL SEWER INVESTIGATION PARAMETER LIST OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Analytes	Units	Method Detection Level	Outfall 001	Outfall 003	Outfall 004	Outfall 005
Mercury	μg/L	0.4	x			
Toluene	μg/L	1	x	x	x	x
2-Chlorotoluene	$\mu g/L$	1	x	x	x	x
4-Chlorotoluene	μg/L	1	x	×	x	x
2,4/2,5-Dichlorotoluene	$\mu g/L$	1	x	x	×	x
2,6-Dichlorotoluene	μg/L	1	x	x	x	×
2,3/3,4-Dichlorotoluene	μg/L	1	x	x	x	x
Benzene	μg/L	1			x	x
Chlorobenzene	µg/L	1	x	x	x	x
1,2-Dichlorobenzene	μg/L	1	x	x	x	×
1,3-Dichlorobenzene	μg/L	1	x	x	x	x
1,4-Dichlorobenzene	μg/L	1	x	x	x	x
1,2,3-Trichlorobenzene	μg/L	1	x	x	x	x
1,2,4-Trichlorobenzene	µg/L	1	x	x	x	x
1,2,3,4-Tetrachlorobenzene	μg/L	1	x	x	x	x
1,2,4,5-Tetrachlorobenzene	μg/L	1	x	x	x	x
Trichloroethylene	μg/L	1	x	x		-
Tetrachloroethylene	μg/L	1	x	x	x	
2-Chlorobenzotrifluoride	μg/L	1		x	-	
4-Chlorobenzotrifluoride	μg/L	1		x		
2,4-Dichlorobenzotrifluoride	μg/L	1		x		
3,4-Dichlorobenzotriflouride	μg/L	1		x		
Hexachlorocyclopentadiene	μg/L	1		x		
Aroclor - 1016	μg/L					x
Aroclor - 1221	μg/L					x
Aroclor - 1232	μg/L					x
Aroclor - 1242	μg/L					x
Aroclor - 1248	μg/L					x
Aroclor - 1254	μg/L					x
Aroclor - 1260	μg/L					x

TABLE 3.2

OUTFALL 001 ANALYTICAL RESULTS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Location Identification Sample Date Manhole Designation	1-1 7/12/95 MH585	1-2 7/12/95 MH518	1-3 (Dup. of 1-1) 7/12/95 MH585
Parameter (µg/L)			
Toluene	ND1	ND1	ND1
Chlorobenzene	ND1	ND1	ND1
2-Chlorotoluene	32	1	33
4-Chlorotoluene	11	ND1	11
1,3-Dichlorobenzene	ND1	3	ND1
1,4-Dichlorobenzene	ND1	3	ND1
1,2-Dichlorobenzene	ND1	ND1	ND1
2,5/2,4-Dichlorotoluene	12	ND1	12
2,6-Dichlorotoluene	2	ND1	2
2,3/3,4-Dichlorotoluene	5	ND1	5
Trichloroethylene	59 J	64	83 J
Tetrachloroethylene	44	49	54
1,2,4-Trichlorobenzene	ND1	2	ND1
1,2,3-Trichlorobenzene	ND1	ND1	ND1
1,2,4,5-Tetrachlorobenzene	ND1	ND1	ND1
1,2,3,4-Tetrachlorobenzene	ND1	ND1	ND1
Mercury	0.75	4.4	0.65

¹⁾ ND x - Not detected at associated value.

J - Associated value is estimated.

TABLE 3.3

OUTFALL 001 CHEMICAL LOADINGS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Location Identification Manhole Designation	1-1 (1) MH585			1-2 MH518		
Flow (gpd)	31,000			17,000		
Parameter	μg/L	_	lbs/d	μg/L	Ibs/d	
2-Chlorotoluene	32		0.0083	1	0.00014	
4-Chlorotoluene	11		0.0028	ND1		
1,3-Dichlorobenzene	ND1			3	0.00043	
1,4-Dichlorobenzene	ND1			3	0.00043	
2,5/2,4-Dichlorotoluene	12		0.0031	ND1	-	
2.6-Dichlorotoluene	2		0.00052	ND1		
2,3/3,4-Dichlorotoluene	5		0.0013	ND1		
Trichloroethylene	71	J	0.018	64	0.0091	
Tetrachloroethylene	49		0.013	49	0.0069	
1,2,4-Trichlorobenzene	ND1			2	0.00028	
Mercury	0.7		0.00018	4.4	0.00062	
Location Totals			0.047		0.018	
Total Leaving the Plant			0.047			

¹⁾ Chemical loading is based on average of samples 1-1 and 1-3 (duplicate sample).

J - Associated value is estimated.

TABLE 3.4

OUTFALL 003 ANALYTICAL RESULTS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Location Identification Sample Date Manhole Designation	3-1 7/27/95 MH2	3-2 8/1/95 MH1	3-3 7/27/95 NEW MH	3-4 7/27/95 MH681	3-5 7/27/95 MH684	3-6 7/27/95 MH433	3-7 7/27/95 MH429
Parameter (µg/L)							
Toluene	ND 1	ND1	ND 1	ND 1	ND 1	ND 1	5
Chlorobenzene	ND 1	ND1	ND 1	ND 1	ND 1	ND 1	ND 1
2-Chlorotoluene	2 J	14	ND 1	ND 1	ND 1	ND 1	21 J
4-Chlorotoluene	1	7	ND 1	ND 1	ND1	ND 1	ND1
1,3-Dichlorobenzene	ND 1	ND1	ND 1	ND 1	ND 1	ND 1	2
1,4-Dichlorobenzene	ND 1	ND1	ND 1	ND 1	ND 1	ND 1	4
1,2-Dichlorobenzene	ND 1	ND 1	ND 1	ND1	ND 1	ND 1	ND 1
2,5/2,4-Dichlorotoluene	ND 1	ND1	7	ND 1	ND 1	ND 1	87
2,6-Dichlorotoluene	ND1	ND1	ND 1	ND 1	ND 1	ND 1	3
2,3/3,4-Dichlorotoluene	ND 1	ND1	2	ND 1	ND 1	ND 1	19
Trichloroethylene	1	2	2	3	2	2	33
Tetrachloroethylene	ND 1	ND 1	ND 1	ND 1	ND 1	2	28
4-Chlorobenzotrifluoride	24	20	290	210	140	ND 1	31
2-Chlorobenzotrifluoride	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	6
3,4-Dichlorobenzotrifuoride	ND 1	ND1	6	3	2	ND 1	ND 1
2,4-Dichlorobenzotrifluoride	ND1	ND1	ND 1	ND 1	ND 1	ND 1	ND 1
1,2,4-Trichlorobenzene	ND 1	ND1	ND 1	ND 1	ND 1	ND1	24
1,2,3-Trichlorobenzene	ND1	ND 1	ND 1	ND 1	ND 1	ND 1	2
1,2,4,5-Tetrachlorobenzene	ND1	ND1	ND 1	ND1	ND 1	ND 1	5
1,2,3,4-Tetrachlorobenzene	ND 1	ND 1	2	ND 1	ND 1	ND 1	2
Hexachlorocyclopentadiene	1	2	2	ND 1	ND 1	1	32

¹⁾ ND x - Not detected at associated value.

J - Associated value is estimated.

TABLE 3.5

OUTFALL 003 CHEMICAL LOADINGS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Location Identification Manhole Designation Flow (gpd)	3- MH 10,		MI	3-2 H1 0,000	NEW	-3 7 MH 0,000		7681 000	МН	3-5 684 3,000	MH	-6 433 0,000	MH	3-7 429 5,500
Parameter	μg/L	lbs/d	μg/L	lbs/d	μg/L	lbs/d	μg/L	lbs/d	μg/L	lbs/d_	μg/L	lbs/d	μg/L	lbs/d_
Toluene	ND 1	-	ND 1		ND 1		ND 1		ND 1		ND 1		5	0.00027
2-Chlorotoluene	2 J	0.00017	14	0.036	ND 1		ND1		ND 1		ND 1		21	0.0011
4-Chlorotoluene	1	0.00008	7	0.018	ND1		ND 1		ND1	-	ND 1		ND1	
1,3-Dichlorobenzene	ND 1		ND1		ND 1		ND 1		ND 1		ND 1		2	0.00011
1,4-Dichlorobenzene	ND 1		ND 1		ND 1		ND 1		ND 1		ND 1		4	0.00022
2,5/2,4-Dichlorotoluene	ND 1		ND 1		7	0.018	ND 1	-	ND 1		ND 1		87	0.0047
2.6-Dichlorotoluene	ND 1		ND1		ND1		ND 1		ND 1	_	ND 1		3	0.00016
2,3/3,4-Dichlorotoluene	ND 1		ND 1		2	0.0052	ND 1		ND 1		ND 1		19	0.0010
Trichloroethylene	1	0.00008	2	0.0052	2	0.0052	3	0.00080	2	0.00030	2	0.050	33	0.0018
Tetrachloroethylene	ND 1		ND 1	-	ND 1		ND 1		ND 1		2	0.050	28	0.0015
4-Chlorobenzotrifluoride	24	0.00200	20	0.052	290	0.75	210	0.056	140	0.021	ND 1		31	0.0017
2-Chlorobenzotrifluoride	ND 1		ND 1	-	ND1		ND 1		ND 1	-	ND 1		6	0.00033
3,4-Dichlorobenzotrifuoride	ND 1	-	ND 1		6	0.016	3	0.00080	2	0.00030	ND 1		ND 1	_
1,2,4-Trichlorobenzene	ND 1	-	ND 1	_	ND1	_	ND 1		ND 1	-	ND 1		24	0.0013
1,2,3-Trichlorobenzene	ND 1		ND 1		ND 1		ND 1		ND 1		ND 1		2	0.00011
1,2,4,5-Tetrachlorobenzene	ND 1	-	ND 1	-	ND1		ND 1		ND 1		ND 1		5	0.00027
1,2,3,4-Tetrachlorobenzene	ND 1		ND 1		2	0.0052	ND 1		ND 1		ND 1		2	0.00011
Hexachlorocyclopentadiene	1	0.00008	2	0.0052	2	0.0052	ND 1		ND 1		1	0.025	32	0.0017
Location Totals		0.0022		0.062		0.79		0.058		0.022		0.13		0.0099
(1)														

Total Leaving the Plant (1)

0.19

⁽¹⁾ The total loading leaving the Plant is the sum of the loadings at locatins 3-1, 3-2 and 3-6.

J Associated value is estimated.

TABLE 3.6

OUTFALL 004 ANALYTICAL RESULTS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Location Identification Sample Date Manhole Designation	4-1 8/1/95 MH93E	4-2 8/1/95 MH97	4-3 8/1/95 MH97
Parameter (µg/L)			
Toluene	ND1	ND 1	ND 1
Chlorobenzene 2-Chlorotoluene	ND 1 ND 1	ND 1 ND 1	ND 1 1
4-Chlorotoluene	ND1	ND 1	ND1
1,3-Dichlorobenzene	ND 1	ND1	ND1
1,4-Dichlorobenzene	ND1	ND 1	ND1
1,2-Dichlorobenzene	ND1	ND 1	ND 1
2,5/2,4-Dichlorotoluene	ND1	ND 1	ND 1
2.6-Dichlorotoluene	ND1	ND 1	ND 1
2,3/3,4-Dichlorotoluene	ND1	ND 1	ND 1
Tetrachloroethylene	ND 1	ND 1	ND1
1,2,4-Trichlorobenzene	ND 1	ND 1	ND 1
1,2,3-Trichlorobenzene	ND 1	ND 1	ND 1
1,2,4,5-Tetrachlorobenzene	ND1	ND 1	ND 1
1,2,3,4-Tetrachlorobenzene	ND 1	ND 1	ND 1
Benzene (2)	ND 1	ND 1	ND1

- 1) ND x Not detected at associated value.
- 2) Sampled using grab sample techniques at 0, 12, and 24 hours. Lab composited and analysed after holding time expired.

TABLE 3.7

OUTFALL 004 CHEMICAL LOADINGS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Location Identification Manhole Designation Flow (gpd)	4-1 MH93E 5,900,000		4-2 MH97 1,100,000		4-3 MH97 1,800,000	
Parameter	μg/L	lbs/d	μg/L	lbs/d	μg/L	lbs/d
2-Chlorotoluene	ND 1		ND1		. 1	0.015
Location Totals		0		0		0.015
Total Leaving the Plant		0				

TABLE 3.8

OUTFALL 005 ANALYTICAL RESULTS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Location Identification	5-1	5-2	5-3	5-4
Sample Date	7/13/95	7/13/95	7/13/95	7/13/95
Manhole Designation	H-20	MH226	MH217	MH211
Parameter (µg/L)				
Toluene	ND 1	ND 1	ND 1	ND 1
Chlorobenzene	ND 1	ND 1	ND 1	ND 1
2-Chlorotoluene	ND 1	ND 1	ND 1	1
4-Chlorotoluene	ND 1	ND1	ND1	ND 1
1,3-Dichlorobenzene	ND 1	ND 1	ND 1	ND 1
1,4-Dichlorobenzene	ND 1	ND 1	ND1	ND 1
1,2-Dichlorobenzene	ND 1	ND 1	ND 1	ND 1
2,5/2,4-Dichlorotoluene	ND 1	ND 1	ND1	ND 1
2.6-Dichlorotoluene	ND 1	ND 1	ND 1	ND 1
2,3/3,4-Dichlorotoluene	ND 1	ND 1	ND 1	ND 1
1,2,4-Trichlorobenzene	ND 1	ND 1	ND 1	ND 1
1,2,3-Trichlorobenzene	ND 1	ND 1	ND 1	ND 1
1,2,4,5-Tetrachlorobenzene	ND 1	ND 1	ND1	ND 1
1,2,3,4-Tetrachlorobenzene	ND 1	ND 1	ND 1	ND 1
Benzene (2)	ND 1	ND 1	ND 1	ND 1
Aroclor-1016	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1221	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1232	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1242	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1248	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1254	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1260	ND 0.05	ND 0.05	ND 0.05	ND 0.05

¹⁾ ND x - Not detected at associated value.

²⁾ Sampled using grab sample techniques at 0, 12, and 24 hours. Samples were composited by the lab.

TABLE 3.9

OUTFALL 005 CHEMICAL LOADINGS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Location Identification Manhole Designation Flow (gpd)	5-1 H-20 13,000,000		5-2 MH226 150,000		5-3 MH217 13,000,000		5-4 MH211 8,200,000	
Parameter	μg/L	lbs/d	μg/L	lbs/d	μg/L	lbs/d	μg/L	lbs/d_
2-Chlorotoluene	ND 1		ND1		ND 1		1	0.068
Location Totals	,	0		0		0		0.068
Outfall Total		0						

TABLE 4.1

RANKING OF SEWER SEGMENT LOADINGS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

RANK	LOCATION	LOAI	DING	SEWER SEGMENT
-		lbs/d	lbs/yr	
1	3-3	0.79	290	MH 770 or MH 681 to NEW MH
2	3-6	0.13	47	M- AREA
3	5-4	0.068	25	C-39 to M211
4	3-2	0.062	23	NEW MH to MH 1
5	3-4	0.058	21	NW V-AREA & MH 684 to MH 681
6	1-1	0.047	17	MH 518 to MH 585
7	3-5	0.022	8.0	NE V-AREA to MH 684
. 8	1-2	0.018	6.6	WEST T-AREA & U-90
9	4-3	0.015	5.5	B-25 to MH 76 to MH 66 to MH 97
10	3-7	0.0099	3.6	NORTHERN M-AREA
11	3-1	0.0022	0.80	N-AERA NEUTRALIZATION
12	4-1	0	0	MH 97 to MH 93E
13	4-2	0	0	NORTHERN C-AREA
14	5-1	0	0	MH 56J & MH 226 to LIFT STATION
15	5-2	0	0	H & L-AREAS
16	5-3	0	0	MH 211 to MH 217
RANK	OUTFALL	LOADI	NG (1)	PERCENT OF TOTAL
	-	lbs/d	lbs/yr	
1	003	0.19	70	80%
2	001	0.047	17	20%
3	004	0	0	0%
4	005	0	0	0%

Note:

TOTAL

87

100%

0.237

⁽¹⁾ The total outfall loading is the sum of the loading at the most downstream location(s).

001 MANHOLES TO BE INSPECTED -PHASE II INVESTIGATION OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

OxyChem Manhole Designation	(1)
MH 584	
MH 585	
MH 520	
MH9	
MH 518	
MH 563	
MH 564	
MH 565	
MH 566	
MH 567	

Note:

(1) Manholes typically listed in order from most downstream sections to upstream sections.

003 MANHOLES TO BE INSPECTED -PHASE II INVESTIGATION OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

N & V-AREA OxyChem Manhole Designation	M-AREA OxyChem Manhole Designation
MH 1	MH 434
MH 2	MH 440
NEW MH	MH 439
MH 770	MH 438
MH 681	MH 433
MH 680	MH 432 ⁽²⁾
MH 679	MH 431
MH 729	
MH 728	
MH 684	
MH 685	
MH 686	
MH 687	
MH 688	
MH 689	
MH 690	
MH 691	
MH 693	
MH 694	
MH700	
MH 701	
MH702	
MH703	
MH704	
MH705	

- (1) Manholes typically listed in order from most downstream sections to upstream sections
- (2) Take grab samples from process flows entering MH 432

004 MANHOLES TO BE INSPECTED -PHASE IF INVESTIGATION OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

OxyChem Manhole Designation	(1)
MH 97	
MH 66	
MH 76	
MH 99	
MH 77	
MH 98A	
MH 98	
MH 98 B	
MH 77A	
MH 78	
MH 78A	
MH 79	

Note:

(1) Manholes typically listed in order from most downstream sections to upstream sections.

005 MANHOLES TO BE INSPECTED -PHASE II INVESTIGATION OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

OxyChem Manhole (1)

Designation

MH 211

MH 210

Notes:

(1) Manholes typically listed in order from most downstream sections to upstream sections.

TABLE A-1

001 OUTFALL FLOWS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Sample ID	1-1	1-2
Sample Location	MH 585	MH 518
Sewer Dia. (in)	36	24
Time (hrs)	Velocity Depth (fps) (ft)	Velocity Depth (fps) (ft)
0 4 8 12 16 20	Surcharged Manhole	2.2 0.04 2.5 0.04 0.8 0.04 0.82 0.04
24		2.69 0.04 1.80 0.04
Measured Flow (cfs) Measured Flow (gpd)		0.03 17000
Actual Flow (gpd) Actual Flow (cfs)	31000 0.05	

TABLE A-2

003 OUTFALL FLOWS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Loc Sample L	ation ID ocation	3- MH	2 (1)	3- MH		NEW		3-4 MH 6	81 (2)	3- MH6		3-4 MH 4		3- MH 4	
Sewer Dia. (in)		Forces	main	34	6	36	5			2:	L _i	24	ŀ	24	1
Time (hrs)		Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)
0 4 8 12 16 20 24		NM NM NM NM NM NM	NM NM NM NM NM NM	2.11 2.3 2 2.55 3.47 1.96	0.94 1.2 1.24 1.1 1.9 1.2	3.12 1.41 0.65 0.44 0.39 0.66	1.23 1.22 1.1 1.12 1.25 1.1	Surcharged Manhole		0 0 0.06 0 0.01	1.75 1.75 1.75 1.75 1.75 1.75	4.99 4.71 4.92 3.04 3.59 3.11	1.23 1.21 1.12 1.18 1.1 1.25	0.45 0.1 0 0.05 0.05 0.24	0.14 0.12 0.1 0.1 0.1 0.1 0.1
Measured Flo Measured Flo Estimated Flo Estimated F	ow (gpd) ow (gpd)	NN NN 10,0 0.01	1 00	6.7 4,38 2 310,	78 ,167 000	2.8 1,833, 310,4	4 ,698	32,00 0.05		0.0 18,1 18,0 0.0	3 35	7.8 5,069, 3,000,	4 624 000	0.05 6,48 6,50	1 85 00

¹⁾ Location 3-1 was located in a process discharge line which discharged from a sump over a short period of time and as a result no flows were obtained.

²⁾ The manhole was surcharged due to the raised outlet to the NEW MH and there was very minimal flow entering the manhole.

TABLE A-3

004 OUTFALL FLOWS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Sample ID 4-1 Sample Location MH 93E		4-2 MH		4-3 MH 97			
Sewer Dia. (in)	30	18	18		18 24		4
Time Avg. Flow (gpm)		Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)		
0		3.31	0.45	2.03	0.96		
4	4200	3.44	0.44	1.68	0.94		
8	4300	3.50	0.40	1.83	0.95		
12	4100	3.54	0.40	3.02	0.85		
16	4000	3.45	0.45	1.85	0.85		
20	4100	4.22	0.48	1.97	0.9		
24	4000	4.40	0.50	1.61	0.92		
	4100		0.45	2.00	0.91		
Measured Flow (cfs) Measured Flow (gpd)			3 .000	2.7 1,800			

TABLE A-4

005 OUTFALL FLOWS OCCIDENTAL CHEMICAL CORPORATION BUFFALO AVENUE PLANT

Sample ID Sample Location	5-1 H-20 Lift Station		5- MH :		5- MH :	3 217	-	5-4 MH 211	
Sewer Dia. (in)			24		3	6	24		
Time (hrs)	Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)	Velocity (fps)	Depth (ft)	
0	1.14	3	0	2	3.58	2.46	5.92	1.4	
4 .	1.44	3	0	2	2.89	2.8	5.49	1.58	
8	0.96	3	0	2	2.51	2.5	3.81	1.5	
12	0.91	3	0	2	3.61	2.5	3.95	1.5	
16	1	3	0	2	3.01	2.5	3.83	1.5	
20	1.64	3	0.2	2	3.28	2.7	5.29	1.75	
24	2.28	3	0.32	2	2.74	2.75	5.59	1.7	
· ·	1.34	3.00	0.07	2.00	3.09	2.60	4.84	1.56	
Measured Flow (cfs) Measured Flow (gpd)	9.46 6,100,000		0.23 150,000			20.11 13,000,000		12.74 8,200,000	
Estimated Flow (cfs) 20.34 Estimated Flow (gpd) 13,000,000 Total 005 Flow (gpd) 14,760,000		0,000	0.23 150,000		20.11 13,000,000		12. 8,200		

¹⁾ The flow at 5-1 must be equal to or greater than the combined flow of 5-2 & 5-3. The measured flow at 5-1 was low because the velocity was not measured in the outlet of the 36" sewer, but rather after the flow entered the wetwell. As a result, the flow dispersed and the velocity was reduced by the time the velocity was measured producing a lower calculated flow.

²⁾ The total flow from in the 005 Outfall is greater than 13,000,000 gallons/day as there is flow entering the sewer after the H-20 Lift Station, before it gets to the K-28 monitoring station.

YPPENDIX B

DATA QUALITY ASSESSMENT

DATA QUALITY ASSESSMENT BUFFALO AVENUE PLANT - OUTFALL SEWER INVESTIGATION OCCIDENTAL CHEMICAL CORPORATION

INTRODUCTION

The following details an assessment of analytical results for water samples collected in July and August 1995 from Outfall sewer lines 001, 002, 003, 004, and 005 at the Niagara Plant. The samples were submitted for microextractables, benzene, mercury and PCBs and are as follows:

Parameter	Investigative Samples	Field Duplicates	Rinse Blanks	MS/MSD	Total
Microextracta Benzene Mercury PCBs	16 7 2 4	1 - 1	1 - -	1/1 1/1 - 1/1	20 9 3 6
Notes: MS/MSD PCBs	Matrix Spike/Matrix Sp Polychlorinated Bipher	pike Duplicate nyls			

Investigative samples were analyzed by the following methods:

Parameter	Methodology
Microextractables	(1)
Benzene	EPA 602 (2)
Mercury	EPA 245.1 (3)
PCBs	EPA 608 (2)

Notes:

(1)	"Compilation of Microextraction Method", Occidental Chemical Report, August 1989.
(2)	"Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater",
	EPA-600/4-82-057, July 1982.
(3)	"Methods for Chemical Analysis of Waters and Wastes", EPA-600/4-79-020, June 1982.
PCBs	Polychlorinated Biphenyls

For sample identification and location, a sample key is presented in Table B-1. A summary of analytical results is presented in Table B-2. The data quality was assessed based on the methods above and the guidance documents, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review", USEPA 540/R-94-012, February 1994 and "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", USEPA 540/R-94-013, February 1994. The assessment was based on final sample results, laboratory blank results, matrix spike/matrix spike duplicate results, blank spike results, surrogates, and field duplicates.

QUALITY ASSURANCE/QUALITY CONTROL ASSESSMENT

Holding Times and Sample Preservation

All of the investigative samples were properly preserved during transport and storage.

Samples were extracted and/or analyzed within the method specified holding times with the exception of samples 4-1, 4-2, and 4-3, which were analyzed three days after the holding time criteria for benzene analysis. All results were qualified as estimated due to a potential low bias.

Method Blank Analyses

Method blanks were extracted and/or analyzed with each batch of samples and all analytes of interest were non-detect.

Surrogate Recoveries - Benzene and PCBs

Surrogate compounds were added to all samples prior to extraction and/or analysis of benzene and PCBs. Surrogate recoveries were within acceptable control limits for all samples.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) and Blank Spike/Blank Spike Duplicate (BS/BSD) Analyses

MS/MSD or BS/BSD analyses were performed for all parameters of interest. All percent recoveries and relative percent differences (RPDs) were within the required control limits with the following exceptions:

- i) A high RPD was reported in one of the microextractable MS/MSD analyses for 1,3-dichlorobenzene. All associated results were non-detect and would not have been impacted by the poor reproducibility.
- ii) High recoveries were reported for 1,2-dichlorobenzene, 2-chlorotoluene, and 1,2,4-trichlorobenzene in some of the blank spike analyses for the microextractables. All associated positive data were qualified as estimated due to a potential high bias. Non-detect sample results would not have been affected.

Field OA/OC Results

Trip blanks were transported with samples submitted for benzene analysis. Volatile compounds of interest were not detected in any of the trip blanks.

2583 (170) B-2

A rinse blank was submitted for microextractables analysis. All compounds of interest were non-detect with the exception of toluene and 1,2,3,4-tetrachlorobenzene. Associated sample results less than five times the blank concentrations for these compounds were qualified as non-detect.

Sample 1-3 was collected as a "blind" field duplicate and analyzed for microextractables and mercury as noted in Table B-1. The data showed acceptable reproducibility outside of estimated regions of detection with the exception of trichloroethene. Due to the variability of this compound, associated sample results were qualified as estimated.

CONCLUSION

Sample results reported for this study were acceptable with the qualifications noted herein.

B-3

2583 (170)

TABLE B-1

SAMPLE SUMMARY KEY NIAGARA PLANT - OUTFALL SEWER INVESTIGATION OCCIDENTAL CHEMICAL CORPORATION JULY - AUGUST 1995

Sample ID	Location	Date	Time	Analytes	Comments
1-1	Outfall 001 - Manhole 585	07/12/95	0100	Microextractables, Mercury	
1-2	Outfall 001 - Manhole 518	07/12/95	0100	Microextractables, Mercury	
1-3	Outfall 001 - Manhole 585	07/12/95	0100	Microextractables, Mercury	Duplicate of 1-1
3-1	Outfall 003 - Manhole 2	07/27/95	1230	Microextractables	
3-2	Outfall 003 - Manhole 1	08/01/95	1400	Microextractables	
3-3	Outfall 003 - NEW MH	07/27/95	1230	Microextractables	
3-4	Outfall 003 - Manhole 681	07/27/95	1230	Microextractables	*
3-5	Outfall 003 - Manhole 684	07/27/95	1230	Microextractables	
3-6	Outfall 003 - Manhole 430	07/27/95	1230	Microextractables	
3-7	Outfall 003 - Manhole 429	07/27/95	1230	Microextractables	
Rinse Blank	•	07/27/95	1230	Microextractables	Rinse Blank
4-1	Outfall 004 - Manhole 93E	08/01/95	1430	Microextractables, Benzene	
4-2	Outfall 004 - Manhole 97	08/01/95	1440	Microextractables, Benzene	
4-3	Outfall 004 - Manhole 97	08/01/95	1445	Microextractables, Benzene	
5-1	Outfall 005 - H-20 Lift Station	07/13/95	1100	Microextractables, Benzene, PCBs	MS/MSD (Benzene)
5-2	Outfall 005 - Manhole 226	07/13/95	1100	Microextractables, Benzene, PCBs	
5-3	Outfall 005 - Manhole 217	07/13/95	1100	Microextractables, Benzene, PCBs	MS/MSD (Microextractables)
5-4	Outfall 005 - Manhole 211	07/13/95	1100	Microextractables, Benzene, PCBs	MS/MSD (PCBs)

Notes:

MS/MSD Matrix Spike/Matrix Spike Duplicate

TABLE B-2

ANALYTICAL RESULTS SUMMARY NIAGARA PLANT - OUTFALL SEWER INVESTIGATION OCCIDENTAL CHEMICAL CORPORATION JULY - AUGUST 1995

Sample ID:	1-1	1-2	1-3 (Duplicate of 1-1)	3-1	3-2	3-3	3-4	3-5	3-6
Sample Date:	07/12/95	07/12/95	07/12/95	07/27/95	08/01/95	07/27/95	07/27/95	07/27/95	07/27/95
Parameter									
Microextractables (µg/L)									
Toluene	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1
Chlorobenzene	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1
2-Chlorotoluene	32	1	33	2J	14	ND 1	ND 1	ND 1	ND 1
4-Chlorotoluene	11	ND 1	11	1	7	ND 1	ND 1	ND 1	ND 1
1,3-Dichlorobenzene	ND 1	3	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1
1.4-Dichlorobenzene	ND 1	3	ND 1	ND 1	ND 1	ND 1	ND1	ND 1	ND 1
1,2-Dichlorobenzene	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1
2,5/2,4-Dichlorotoluene	- 12	ND 1	12	ND 1	ND 1	7	ND 1	ND 1	ND 1
2,6-Dichlorotoluene	2	ND 1	2	ND 1	ND 1				
2,3/3,4-Dichlorotoluene	5	ND 1	5	ND 1	ND 1	2	ND 1	ND 1	ND 1
Trichloroethylene	59J	64	83J	1	2	2	3	2	2
Tetrachloroethylene	44	49	54	ND 1	2				
4-Chlorobenzotrifluoride	-	-	-	24	20	290	210	140	ND 1
2-Chlorobenzotrifluoride	-	-	-	ND 1	ND 1				
3.4-Dichlorobenzotrifluoride	-	-		ND 1	ND 1	6	3	2	ND 1
2.A-Dichlorobenzotrifluoride	•		*	ND 1	ND 1				
1,2,4-Trichlorobenzene	ND 1	2	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1
1,2,3-Trichlorobenzene	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1
1,2,4,5-Tetrachlorobenzene	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1
Hexachlorocyclopentadiene	-	-	*	1	2	2	ND 1	ND 1	1
1,2,3,4-Tetrachlorlobenzene	ND 1	ND 1	ND 1	ND 1	ND 1	ND 2	ND 1	ND 1	ND 1
Volatiles (µg/L)									
Benzene	•	-			-	-	_	-	_
									*
PCBs (μg/L)									
Aroclor-1016	-		-	-		-	-	-	-
Aroclor-1221	-	- '	-	-	-	-	-	\ <u>-</u>	-
Aroclor-1232	-	-	-	-	-	-	. •		-
Aroclor-1242		-	-	•	•	-	-		
Aroclor-1248	-	-	•	-	-	-	-	-	-
Aroclor-1254	-	-		-	•	-	-	-	-
Aroclor-1260	-	-	•	-	-	-	-	-	-
Metals (μg/L)									
Mercury	0.75	4.4	0.65	-	-	-	-	-	_

TABLE B-2

ANALYTICAL RESULTS SUMMARY NIAGARA PLANT - OUTFALL SEWER INVESTIGATION OCCIDENTAL CHEMICAL CORPORATION JULY - AUGUST 1995

Sample ID:	3-7	4-1	4-2	4-3	5-1	5-2	5-3	5-4
Sample Date:	07/27/95	08/01/95	08/01/95	08/01/95	07/13/95	07/13/95	07/13/95	07/13/95
Parameter								
Microextractables (μg/L)								
Toluene	ND 5	ND 1	ND 1					
Chlorobenzene	ND 1	ND 1						
2-Chlorotoluene	21J	ND 1	ND 1	1	ND 1	ND 1	ND 1	1
4-Chlorotoluene	ND 1	ND 1						
1,3-Dichlorobenzene	2	ND 1	ND 1					
1,4-Dichlorobenzene	4	ND 1	ND 1					
1,2-Dichlorobenzene	ND 1	ND 1						
2,5/2,4-Dichlorotoluene	87	ND 1	ND 1					
2,6-Dichlorotoluene	3	ND 1	ND 1					
2,3/3,4-Dichlorotoluene	19	ND 1	ND 1					
Trichloroethylene	33	-	•	-	-		-	-
Tetrachloroethylene	28	ND 1	ND 1	ND 1	-	-	-	-
4-Chlorobenzotrifluoride	31	-	-	-		-	-	-
2-Chlorobenzotrifluoride	6	-	-	-	-	-	-	-
3.4-Dichlorobenzotrifluoride	ND 1	-	-	-	-	-		-
2.A-Dichlorobenzotrifluoride	ND 1	-	-	-		-	1.	-
1,2,4-Trichlorobenzene	24	ND 1	ND 1					
1,2,3-Trichlorobenzene	2	ND 1	ND 1					
1,2,4,5-Tetrachlorobenzene	5	ND 1	ND 1					
Hexachlorocyclopentadiene	2	-		-	-	-	2 - 2	-
1,2,3,4-Tetrachlorlobenzene	32	ND 1	ND 1					
Volatiles (μg/L)								
Benzene	-	ND 1	ND 1					
PCBs (μg/L)								
Aroclor-1016	-	-	-	-	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1221	-	-	-	-	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1232			-	-	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1242	-		· •	_	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1248	-	-		-	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1254	-	-	-	L.	ND 0.05	ND 0.05	ND 0.05	ND 0.05
Aroclor-1260	-	*			ND 0.05	ND 0.05	ND 0.05	ND 0.05
Metals (μg/L)								
Mercury	-	-		· -	-	•	-	-

Notes:

PCBs Polychlorinated Biphenyls
ND Non-detect at associated value.
J Associated value is estimated.
- Not Analyzed.

APPENDIX C

SEMER CONFIGURATION AT SAMPLE LOCATIONS

APPENDIX C SEWER CONFIGURATION AT SAMPLE LOCATIONS

OUTFALL 001

Sample Location 1-1 (MH 585)

MH 585 is located south of Adams Avenue, east of Building V-68. Although portions of the brick chamber have been grouted there was still some groundwater infiltration into the manhole, estimated to be approximately 0.25 gpm. Four inlet sewers to the manhole were noted: a 36-inch diameter concrete sewer entering from the north from MH 520, a 4-inch diameter HDPE sewer entering from the northeast, believed to drain condensate from building U-67, a 6-inch diameter HDPE cooling water sewer entering from the east, and a 6-inch diameter abandoned sewer entering from the east. The outlet for the manhole is a 36-inch diameter concrete sewer which extends south to MH 584.

Sample Location 1-2 (MH 518)

MH 518 consists of a concrete chamber with no evidence of groundwater infiltration observed. There were two inlets to MH 518; a 24-inch diameter concrete sewer from the north (i.e., T-Area) and the 12-inch diameter HDPE sewer from the east (i.e. U-Area) The outlet for this manhole was a 36-inch diameter concrete sewer which extends south and eventually discharges the flow to MH 585 and then to the River.

OUTFALL 003

Sample Location 3-1 (MH 2)

MH 2 is located south of Building V-61, approximately 35 feet south of MH 1. The manhole has a concrete chamber with no evidence of groundwater infiltration. The manhole has a 36-inch diameter HDPE inlet from MH 1 to the north as well as a 4-inch diameter forcemain

entering from the west at the top of the chamber. The outlet for the manhole is a 36-inch diameter HDPE pipe which heads south to the 003 Outfall Monitoring Station.

Sample Location 3-2 (MH 1)

MH 1 is located in Adams Avenue, south of Building V-61. The manhole has a concrete chamber with no evidence of groundwater infiltration. There are two inlets to the manhole; a 36-inch diameter concrete sewer from the west and the 24-inch diameter steel forcemain outlet from the east. The outlet from the manhole is a 36-inch diameter HDPE sewer going south to MH 2 and then on to the 003 Outfall Monitoring Station.

Sample Location 3-3 (NEW MH)

The NEW MH is a recently constructed manhole installed in July 1995 to replace MH 716. The new manhole was installed to eliminate potential NAPL infiltration in some of the contributing sewers to MH 716. MH 716 had three inlet sewers; a 24-inch diameter sewer from MH 681 to the north, and two 14-inch diameter sewers from the south, one from MH 770, and one from MH 773. With the construction of the new manhole, the 14-inch diameter sewer from MH 773 was eliminated (i.e. abandoned), and the other remaining 14-inch diameter and 24-inch diameter sewers were replaced with new HDPE sewers (12-inch diameter each) connecting to the new manhole. The NEW MH has a concrete chamber with no evidence of groundwater infiltration. The NEW MH chamber for MH 716A was constructed around the existing 36-inch diameter sewer that runs between MH 716 and MH 1 with the top of the 36-inch sewer removed to allow water to enter the 36-inch sewer from the two new HDPE sewer laterals from MH 681 and MH 770.

Sample Location 3-4 (MH 681)

MH 681 is located north of Adams Avenue, and west of Building V-61. There are three inlets to the manhole; a 12-inch diameter

sewer from the north, a 21-inch diameter sewer from the northeast, and an abandoned 8-inch diameter steel pipe from the northwest. The outlet for the manhole was a 24-inch diameter sewer to MH 716 but that sewer was plugged and replaced with the installation of a 12-inch diameter HDPE sewer directing flow south to the NEW MH. The water level in the manhole is surcharged to within approximately 3 feet of the rim due to the raised elevation of the new 12-inch diameter HDPE outlet sewer and as a result it was difficult to assess whether there was groundwater infiltration.

Sample Location 3-5 (MH 684)

MH 684 is located at the northwest corner of Building V-61. The manhole has a brick chamber with no evidence of groundwater infiltration. It was noted that there was approximately 2-inch of sediment in the bottom of the manhole. There were 4 inlet sewers to the manhole; a 4-inch diameter clay sewer from the southwest, a 6-inch diameter clay sewer from the northeast, a 21-inch diameter clay sewer from the east, and a 6-inch diameter steel sewer from the east. The outlet for the manhole is a 24-inch diameter clay sewer that runs southeast to MH 681.

Sample Location 3-6 (MH 433)

MH 433 has a brick chamber with no evidence of groundwater infiltration. The manhole has 2 inlets; a 15-inch diameter concrete sewer from the north and a 24-inch diameter clay sewer from the east. The outlet from the manhole is a 21-inch diameter clay sewer running east to MH 434.

Sample Location 3-7 (MH 429)

MH 429 has a brick chamber with some groundwater infiltration. The manhole has two inlets; a 10-inch diameter concrete sewer from the east and a 24-inch diameter clay sewer from the north. The outlet is a 24-inch diameter clay sewer taking flow south to MH 430. There was 2-inches of sediment noted in the bottom of the manhole.

OUTFALL 004

Sample Location 4-1 (MH 93E)

MH 93E is located on the southwest corner of the intersection of 47th St. and Energy Boulevard. The manhole has a brick chamber with no evidence of groundwater infiltration. The manhole has 4 inlets; a 4-inch diameter steel sewer entering from the northeast, a 30-inch diameter clay sewer entering from the east, a 6-inch diameter clay sewer entering from the southeast, and an abandoned 30-inch diameter sewer entering from the south. The outlet for the manhole is a 36-inch diameter concrete sewer directing flow off-Site, north along 47th Street.

Sample Locations 4-2 and 4-3 (MH 97)

MH 97 has a brick chamber with some groundwater infiltration. The manhole has 3 inlets; an 18-inch diameter concrete sewer entering from the northeast, a 24-inch diameter clay sewer entering from the south and a 4-inch diameter steel sewer entering from the south. The outlet for the manhole is a 24-inch diameter clay sewer that carries the flow east to MH 93B.

OUTFALL 005

Sample Location 5-1 (H-20 Lift Station)

The forebay of the H-20 Lift Station was the location for Sample 5-1. The flow from MH 56E enters the forebay which is open to the exterior of the building prior to the flow entering the wet well which is inside Building H-20.

Sample Location 5-2 (MH 226)

MH 226 is located in middle of the intersection, southwest of Building H-20, and west of Building H-15. The manhole has a concrete chamber in good condition with no evidence of groundwater infiltration. The manhole has two inlet sewers; a 12-inch diameter concrete entering from the south, and a 21-inch diameter concrete sewer entering from the east. The outlet for the manhole is a 24-inch diameter concrete sewer that takes the flow north to MH 56J which then directs it into the H-20 Lift Station.

Sample Location 5-3 (MH 217)

MH 217 is located on the east side of 47th Street, to the east of Building A-1. The manhole has a concrete chamber with no evidence of groundwater infiltration. There is one inlet to the manhole which is a 36-inch diameter concrete sewer entering from the northeast, and the outlet is a 36-inch diameter concrete pipe which exits to the south and directs flow to MH 56H.

Sample Location 5-4 (MH 211)

MH 211 is located approximately 4 feet south of Building B-29. The manhole has a concrete chamber in good condition with no evidence of groundwater infiltration. There were two inlets to the manhole; an 8-inch diameter steel sewer entering from the north and a 21-inch diameter concrete sewer entering from the east. The outlet for the manhole is a 24-inch diameter concrete sewer exiting to the west, carrying the flow to MH 212.